
The Bulletin of Symbolic Logic

Volume 25, Number 3, September 2019

ETA-RULES IN MARTIN-LÖF TYPE THEORY

ANSTENKLEV

Abstract. The eta rule for a set A says that an arbitrary element of A is judgementally
identical to an element of constructor form. Eta rules are not part of what may be called
canonical Martin-Löf type theory. They are, however, justified by the meaning explanations,
and a higher order eta rule is part of that type theory. The main aim of this article is to
clarify this somewhat puzzling situation. It will be argued that lower order eta rules do not,
whereas the higher order eta rule does, accord with the understanding of judgemental identity
as definitional identity. A subsidiary aim is to clarify precisely what an eta rule is. This will
involve showing how such rules relate to various other notions of type theory, proof theory,
and category theory.

§1. Introduction. The rules governing the constants of Martin-Löf type
theory are usually grouped into four classes: formation rules, introduction
rules, elimination rules, and equality rules. Sometimes also a fifth class is
considered, containing for instance the following two identities:

�([x]ap(c, x)) = c : Π(A,B),
pair(fst(c), snd(c)) = c : Σ(A,B).

The rules of this class may be called eta rules owing to their similarity to the
rule of �-reduction in the lambda calculus,

�x.fx � f.
For reasons that will soon become clear, I shall also call rules of this fifth
kind lower order eta rules. The interpretation of typed lambda calculus in
cartesian closed categories suggests the name ‘uniqueness principle,’ a term
employed in the HoTT-book [34] for these rules.
The status of the four first classes of rules is quite unproblematic. For-
mation rules introduce sets, that is, types of individuals. Introduction rules
introduce canonical elements of sets and serve to justify formation rules.
Elimination rules are needed whenever one wishes (as one often does) to
define a function by induction on a set. Equality rules serve to justify the
elimination rules.
The status of eta rules is less clear. They are not part of what may be
called canonical Martin-Löf type theory, namely, the version of type the-
ory presented in, for instance, [23]. Nevertheless, they are justified by the

Received May 7, 2018.
2010Mathematics Subject Classification. 03B15, 03A05.
Key words and phrases. type theory, definitional identity, justification of logical laws.

c© 2019, Association for Symbolic Logic
1079-8986/19/2503-0003
DOI:10.1017/bsl.2019.21

333
at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


334 ANSTENKLEV

so-called meaning explanations. Moreover, the higher order eta rule

[x]f(x) = f : (x : α)�

pertaining to the ‘logical framework,’ is part of canonical type theory. Lower
order eta rules are appealed to at a few places in the HoTT-book. But the
book seems to leave it up to its readers to decide whether or not to accept
these rules in general, since they are there described as ‘optional.’
There are therefore several reasons for being interested in eta rules. Read-
ers of the HoTT-book may want to know what is at stake when deciding
whether to accept or reject such rules. Those interested in the foundations
of Martin-Löf type theory may want to understand why eta rules are not
accepted in the canonical version of the theory, although they are justi-
fied by the meaning explanations. Moreover, they may want to understand
why the higher order eta rule is accepted, in particular why the reasons for
not accepting the lower order eta rules do not apply to the higher order
rule.
In the latter part of this article I shall argue that lower order eta rules do
not, whereas the higher order eta rule does, accordwith the understanding of
judgemental identity—identity as expressed by judgements of the form a =
b : α and α = � : type—as definitional identity. If one wishes to understand
judgemental identity as definitional identity, one should therefore not accept
lower order eta rules as axioms.
Reflection on eta rules thus forces us to deal with certain fundamental
aspects of type theory, in particular the proper understanding of judgemental
identity and the role of the meaning explanations. Although eta rules are
justified by the meaning explanations, there are nevertheless reasons not to
accept them. The meaning explanations should thus not be regarded as the
final arbiter in the question of which rules to accept.
Judgemental identity is sometimes equated, without further comment,
with definitional identity. But, clearly, the mere form of an identity judge-
ment does not make it into a judgement of definitional identity: to merit that
title the judgement must conform to our preferred account of definitional
identity.
Before getting into all of this (Sections 9–12), I shall offer a systematic
overview of eta rules and certain closely related notions. In particular, I
shall distinguish eta rules from co-eta rules. Whereas an eta rule says that
any element of a set is judgementally identical to an element of constructor
form, a co-eta rule says that any function defined on a set A applied to an
arbitrary element of A is judgementally identical to an element of selector
form (Sections 3 and 7). I shall also briefly discuss the incarnations of eta
rules in category theory (Section 6) and proof theory (Section 8), as well as
the propositional versions of eta rules (Section 5). Sections 6 and 8 are not
essential to the argument of the article, but they provide additional context.
I begin (Section 2) with certain preliminaries on the version of type theory
that will be assumed.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


ETA-RULES IN MARTIN-LÖF TYPE THEORY 335

§2. The hierarchy of higher types. I will assume the higher order for-
mulation of Martin-Löf type theory, presented, for instance, in [23, Chap-
ters 19–20] and [24]. This formulation is characterized by the presence of
a hierarchy of higher types, or a ‘logical framework’ [12], which allows for
the typing of all the operators introduced by the formation, introduction,
and elimination rules, thus for instance of Π, Σ, �, and ap. In the more
well-known lower order formulation of the theory, found for instance in the
classical references [20–22], these operations are not typed. We can say in
the metalanguage there that, for instance, Π is a function taking a set A
and a family of sets B over A and yielding a set (Πx : A)B ; but there is no
type of such functions in the system. A symbol such as Π therefore never
occurs isolated in the lower order formulation, but always in a composi-
tion of the form (Πx : A)B . In traditional grammatico-logical terminology,
Π may be called a syncategorematic term: it has no meaning in isolation,
but only in composition with other terms. In the higher order formulation,
by contrast, Π and all of the other symbols introduced by the formation,
introduction, and elimination rules are categorematic terms, since each such
symbol there signifies an object of some type in the hierarchy of higher
types.
At the bottom of the hierarchy there is a type set and for each A : set,
a type el(A) of the elements of A. We shall follow the standard practice
of writing A instead of el(A). It is important to appreciate that the type
set is not a universe in the usual sense of type theory [22, pp. 87–91]. A
universe U is itself a set, hence, according to the meaning explanations, it
has been laid down how the canonical elements of U are formed and how
equal canonical elements of U are formed. This is done by means of the
U-introduction rules, which mirror a specified collection of formation rules.
The universe U is therefore inductively defined and (provided it has only
finitelymany introduction rules) allows for the formulation of an elimination
rule, encapsulating a principle of proof by induction [23, Chapter 14]. The
type set, by contrast, is not inductively defined and does not support proof
by induction. It is open and allows for the addition of new inhabitants A
provided one specifies what the canonical elements of A are and what equal
canonical elements of A are.
Some terminology: an introduction rule will sometimes be spoken of as
associated with a set A, rather than with a set former Φ; likewise for for-
mation, elimination, and equality rules, as well as eta rules. The constants
introduced by the introduction rules for a set A are called its construc-
tors and the constant introduced by the elimination rule for A is called its
selector. For instance, the constructors of the set N of natural numbers are
0 and the successor function s; and its selector is the recursor R. If the
n-ary function con is a constructor of the set A, then an element of con-
structor form con(a1, . . . , an) is also called a canonical element of A, or an
element of canonical form. I shall speak of judgemental, definitional, and
propositional identity and avoid the word ‘equality’ except in the case of the
well-established term ‘equality rule.’ It seems to me preferable to think of
the notion of equality as captured rather by equivalence relations on sets.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


336 ANSTENKLEV

With some experience one can see how to ‘derive’ the elimination and
equality rules for A from its introduction rule(s) [1]. Not all rules with a
conclusion of the form a : A can serve as an introduction rule for A. In
particular, A may not appear negatively in the premiss of its own introduc-
tion rule (it may well appear positively, as in N-introduction). All of this is
captured in the general scheme of rules formulated by Dybjer [6, 7]. This
general scheme is useful not only for understanding the structure of the
rules of type theory: it is also useful for metamathematical purposes, since
the rules are thereby specified once and for all, whence the openness of the
type set is somehow regimented.
The distinction between set and a universe U is an instance of the more
general distinction between types and sets. Any set A gives rise to a type
el(A), but not every type is, or gives rise to, a set. The type set, for instance, is
not itself a set. Types of the form el(A) are types of individuals. A function is
not an individual: it is an object of higher type. Function types are generated
by the following rule:

α : type x : α � � : type
(x : α)� : type.

The identity of function types is governed by the rule
α = α′ : type x : α � � = � ′ : type

(x : α)� = (x : α′)� ′ : type.
(�-type)

When � does not depend on α, the type (x : α)� is usually written (α)� .
With a function f : (x : α)� there is associated a primitive notion
of application, written f(a) for arbitrary a : α. This is captured by the
following rule:

f : (x : α)� a : α
f(a) : �[a/x].

(App)

Identical functions applied to identical arguments yield identical results:

f = g : (x : α)� a = b : α
f(a) = g(b) : �[a/x].

(App-cong)

We usually write f(a1, . . . , an) for f(a1) . . . (an). It should be emphasized
that whereas the application of a function f : (x : α)� to an argument a : α
is a primitive notion, an element c : Π(A,B) is applied to an a : A by means
of the application function ap, yielding ap(c, a). An element c : Π(A,B) is
an individual and therefore not a function in the proper sense.
An object of type (x : α)� can be formed by means of abstraction:

x : α � b : �
[x]b : (x : α)� .

(Abs)

We shall sometimes indicate the type of x in [x]b by writing [x : α]b.
The rule (Abs) should not be regarded as an introduction rule for the
type (x : α)� . Functions of type (x : α)� are also introduced through
the formation, introduction, and elimination rules associated with sets. For
instance, the rule of Π-formation

Π : (X : set)((X )set)set (Π-form)

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


ETA-RULES IN MARTIN-LÖF TYPE THEORY 337

introduces a function, Π, that is not of the form [x]b. Owing to the openness
of the type set, the range of functions that may be introduced in this way
is also open. Hence one cannot hope to specify the canonical objects of
type (x : α)� as being either of the form [x]b or else taken from a list of
constants, since such a list of constants cannot be specified once and for all.
Function types are explained, not by the introduction-like rule (Abs), but
rather by the elimination-like rules (App) and (App-cong). (Here ‘cong’ is
short for ‘congruence.’)
A function of the form [x]b is defined by the beta rule:

x : α � b : � a : α
([x]b)(a) = b[a/x] : �[a/x].

(�)

Functions f and g are judgementally identical if they are pointwise
judgementally identical:

f, g : (x : α)� x : α � f(x) = g(x) : �
f = g : (x : α)� .

(Ext)

The variable x here is to serve as an arbitrary argument to f and g, hence
it may not occur free in any of them. Using (Ext) and (�) one can easily
prove that judgementally identical terms abstract to judgementally identical
functions, the so-called �-rule:

x : α � b = b′ : �
[x]b = [x]b′ : (x : α)� .

(�)

One can also easily prove the higher order eta rule:

[x]f(x) = f : (x : α)�. (�)

The abstraction in [x]f(x) is not to affect f, hence x may not occur free in
f. The rule (�) is thus a derived rule of the system. It can also be taken as
an axiom together with (�), since from these one can derive (Ext).
In the lower order formulation of type theory, operators such asΠ, Σ, �, as
well as the selectors E,D, and J associated with Σ, +, and Id, respectively, are
all variable-binding. In the higher order formulation, abstraction [x]b and
function-type formation (x : α)� are the only variable-binding operations.
So, for instance, if A : set, x : A � B : set, and x : A � b : B , then in the
higher order formulation, we write Π(A, [x]B) rather than (Πx : A)B , and
�([x]b) rather than �x.b. Here � is a function typed as follows:

� : (X : set)(Y : (X )set)((x : X )Y (x))Π(X,Y ). (Π-intro)

One sees from the typing of � that it is in fact a ternary function, whose first
two arguments are a set A and a set-valued function B : (A)set. When all
the arguments are written out we speak of a monomorphic notation. The
notation employed for instance in �(f), by contrast, is called polymorphic,
since here � appears as a ‘typically ambiguous’ function. We shall mostly
prefer the polymorphic notation, but it serves us merely as shorthand for
the official, monomorphic notation.
Formation, introduction, and elimination rules may, in the higher order
formulation, be written as type declarations. We have already seen two

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


338 ANSTENKLEV

examples in (Π-form) and (Π-intro). We may, however, also employ the
usual inference-rule style:

c : Π(A,B) C : (Π(A,B))set d : (z : (x : A)B(x))C (�(z))
F(A,B,C, c, d ) : C (c).

(Π-elim)
An equality rule is always written as an identity:

F(A,B,C, �(f), d ) = d (f) : C (�(f)). (Π-eq)

The rule (Π-elim) allows the definition of a function on Π(A,B) by induc-
tion: to define a function from Π(A,B) into some family C : (Π(A,B))set
it is enough to determine the value of the function for canonical terms �(f)
of Π(A,B).
From the selector F one can define the application function ap and derive
the beta rule for Π-sets:

ap(�(f), a) = f(a) : B(a). (Π-�)

§3. Formulation of eta rules. The beta rule for Π-sets suggests the
formulation of an eta rule for such sets:

�([x]ap(c, x)) = c : Π(A,B). (Π-�)

The variable x may not occur free in c. Read from right to left, (Π-�) says
that the arbitrary element c of Π(A,B) is judgementally identical to a term
of constructor form. This reading of (Π-�) suggests that eta rules can be
formulated also for other sets. Indeed, we should be able to formulate an eta
rule for any set former that has just one associated introduction rule.
One such set former is Σ. For it, an eta rule may be formulated as follows:

pair(fst(c), snd(c)) = c : Σ(A,B). (Σ-�)

Here pair is the constructor for Σ-sets, and fst and snd are the twoprojections,
definable from the selector for Σ.
From (Π-�) and (Σ-�) one can discern a general pattern. Let A : set have
just one constructor, the n-ary function con. Assume that we can define n
functions con-projk on A satisfying

con-projk(con(a1, . . . , an)) = ak : α

for suitable types α. The functions con-projk may be regarded as generalized
projection functions or generalized left inverses to con.1 Then the eta rule
for A is

con(con-proj1(c), . . . , con-projn(c)) = c : A.

This identity says in effect that the projection functions con-projk together
constitute a right inverse to con.
Let us see how this general pattern applies in the case ofΠ. The constructor
� is a ternary function, but, for the time being, let us treat it as it appears in

1Landin’s original use of the term ‘selector’ [17, p. 310] appears to be precisely for such
generalized projection functions.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


ETA-RULES IN MARTIN-LÖF TYPE THEORY 339

the polymorphic notation, namely, as a unary function. For arbitrary x : A
we have

ap(�(f), x) = f(x) : B(x),

by (Π-�). Hence by (�) and (�) we get

[x]ap(�(f), x) = [x]f(x) = f : (x : A)B(x).

Let the projection function �-proj on Π(A,B) be defined as

�-proj = [z][x]ap(z, x) : (Π(A,B))(x : A)B(x).

Then
�-proj(�(f)) = [x]ap(�(f), x) = f : (x : A)B(x),

thus �-proj is a left inverse to �. Moreover,

�(�-proj(c)) = �([x]ap(c, x)) : Π(A,B),

so we may indeed formulate (Π-�) as

�(�-proj(c)) = c : Π(A,B).

Now let us regard � as it in fact is, namely, as a ternary function whose
closure has the form �(A,B,f), where A : set, B : (A)set, and f : (x :
A)B(x). The general formulation of eta rules requires that we define three
projection functions. It is clear that con-projk , written monomorphically, is
not in general a unary function. For instance, it is clear that any of the three
projection functions �-projk , to be defined on Π(A,B), should take A as its
first argument and B as its second argument. Thus, we want:

�-proj1(A,B, �(A,B,f)) = A : set,
�-proj2(A,B, �(A,B,f)) = B : (A)set,
�-proj3(A,B, �(A,B,f)) = f : (x : A)B(x).

But the functions �-proj1 and �-proj2 are easily defined, and �-proj3 is just
the monomorphic version of the function �-proj defined above.
Let us recall the well-ordering setW(A,B), where A : set and B : (A)set.
It has one constructor, given by the introduction rule

a : A b : (B(a))W(A,B)
sup(a, b) :W(A,B).

(W-intro)

Any sup(a, b) : W(A,B) may be thought of as a well-founded tree
obtained by adding a root connecting the well-founded trees enumerated
by b : (B(a))W(A,B). From the selector forW we may define the required
projection functions

sup-proj1 : (W(A,B))A,
sup-proj2 : (z :W(A,B))

(
B(sup-proj1(z))

)
W(A,B)

satisfying the following identities:

sup-proj1(sup(a, b)) = a : A,
sup-proj2(sup(a, b)) = b : (B(a))W(A,B).

Thus we may formulate the eta rule forW as follows:

sup(sup-proj1(c), sup-proj2(c)) = c :W(A,B). (W-�)

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


340 ANSTENKLEV

The unit type 1 has one constructor, namely, the constant

01 : 1. (1-intro)

This constructor is not a function, hence no projection functions can be
defined in this case. The eta rule for 1 is therefore degenerate:

01 = c : 1. (1-�)

The result of imposing this rule on 1 has been called the extensional unit
type by Hofmann [14].
Let us also consider propositional identity, Id(A, a, a) for A : set and
a : A. Its constructor is

refl : (X : set)(x : X )Id(X, x, x). (Id-intro)

Thus for any A : set and a : A, we have a canonical element refl(A, a) :
Id(A, a, a). In this case it is essential to write the required projection func-
tions in the monomorphic notation. Since the constructor refl is binary, we
want two projection functions refl-projk satisfying

refl-proj1(A, a, refl(A, a)) = A : set,
refl-proj2(A, a, refl(A, a)) = a : A.

But these are readily defined. The general scheme for eta rules yields

refl(refl-proj1(A, a, c), refl-proj2(A, a, c)) = c : Id(A, a, a).

But this is tantamount to

refl(A, a) = c : Id(A, a, a). (Id-�)

§4. Nonderivability of eta rules. It is intuitively clear that when the c
appearing in the formulation of the eta rules above is a variable x, then the
resulting judgement is not derivable inMartin-Löf type theory. There simply
are no rules that allow one to demonstrate, for instance,

x : Σ(A,B) � pair(fst(x), snd(x)) = x : Σ(A,B).

The nonderivability of eta rules can be established more rigorously by ref-
erence to the normalization theorem forMartin-Löf type theory. A corollary
of this theorem is the Church–Rosser theorem, namely, that if

a = b : A

is derivable, then there is a c : A such that both a and b reduce to c. Here the
reduction relation is an asymmetric version of the relation of judgemental
identity. A variable x reduces only to itself, as does pair(fst(x), snd(x)), since
pair(a, b) is reducible if and only if either a or b is reducible, but neither
fst(x) nor snd(x) is reducible.
Of the normalization proofs available in the literature, the one developed
byGoguen [10] seems especially pertinent to our context. The system studied
by Goguen is type theory in its higher order formulation with a scheme in
the style of Dybjer for defining sets and their constructors and selectors.
Goguen’s proof,moreover, covers the normalization of open terms, onwhich
we have relied above; and the Church–Rosser theorem is explicitly stated as
a corollary (ibid. Corollary 6.8.6).

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


ETA-RULES IN MARTIN-LÖF TYPE THEORY 341

§5. Propositional eta identities. Whenever a, b : A, one may form the
identity proposition Id(A, a, b). Let us call it the identity proposition
corresponding to the identity judgement a = b : A. An identity propo-
sition corresponding to a (judgemental) eta identity may be called an eta
proposition. The following, for instance, is an eta proposition:

Id(Σ(A,B), pair(fst(c), snd(c)), c).

Let us call a judgement to the effect that an eta proposition is inhabited
a propositional eta rule. Whereas the ordinary (judgemental) eta rules are
not derivable in Martin-Löf type theory, propositional eta rules, in many
cases, are derivable. The required proof object is, in general, constructed by
a single application of the corresponding elimination rule. Thus, for Σ we
have

E
(
c, [x][y]refl(pair(x, y))

)
: Id(Σ(A,B), pair(fst(c), snd(c)), c).

And for Π we have

F(c, [f]refl(�(f)) : Id(Π(A,B), �([x]ap(c, x)), c).

Here we are relying on the selector F available in the higher order formula-
tion. Garner [9] shows that the propositional eta rule for Π is not derivable
in the lower order formulation.
The propositional eta rules for W (A,B) and 1 can be demonstrated
similarly.
Before considering the propositional eta rule for Id(A, a, a), let us note
that any setA allows the formation of a proposition saying that an arbitrary
element c : A is propositionally identical to an element of constructor form.
Here are three examples of such generalized eta propositions:

Id(2, t, c) ∨ Id(2, f, c),
Id(N, 0, c) ∨ (∃x : N)Id(N, s(x), c),
(∃x : A)Id(A+ B, inl(x), c) ∨ (∃y : B)Id(A+ B, inr(y), c).

HereN is the set of natural numbers and has constructors 0 : N and s : (N)N.
The disjoint union A+ B : set has the two constructors

inl : (A)A + B,
inr : (B)A+ B. (+-intro)

The propositional eta rule for Id is not in general derivable in the type
theory assumed here. The eta proposition in question is

Id(Id(A, a, a), refl(a), c) (Id-�-prop-A)

for arbitrary a : A and c : Id(A, a, a). That this set is in general not inhab-
ited was shown by Hofmann and Streicher [15]. But although we do not
have inhabitation for arbitrary A, there are sets A for which (Id-�-prop-A)
is inhabited. Hofmann [14, p. 58] showed it to be inhabited for 0, 1, and N.
Hedberg [13] showed more generally that (Id-�-prop-A) is inhabited when-
ever the relation Id(A, x, y) is decidable, meaning that there is a function
d : (x, y : A) Id(A, x, y) +¬Id(A, x, y). That the identity relations on 0 and
1 are decidable is obvious; that N has a decidable identity relation can be
shown by a double induction.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


342 ANSTENKLEV

§6. Eta identities in category theory. The rules (Σ-�), (Π-�), and (1-�)
have counterparts in the theory of cartesian closed categories.
Let us first briefly recall the notion of a category (we follow the presen-
tation of [16]). There is a collection of objects A,B,C, . . .; a collection of
arrows f, g, h, . . .; and two functions, source and target, from the arrows
into the objects. The collection of objects and the collection of arrows are
both equipped with identity. One writes f : A→ B to mean source(f) = A
and target(f) = B . Whenever f : A → B and g : B → C , there is
a composite arrow gf : A → C . Arrow composition is associative, thus
(hg)f = h(gf). With every object A there is associated an arrow 1A
satisfying f1A = f : A→ B and 1Ag = g : B → A.
A category is cartesian closed if it has the following additional structure.
For any objects A,B there is an object A × B , called a product of A and
B ; two arrows �A,B : A × B → A and �′A,B : A × B → B ; and whenever
f : C → A and g : C → B , then there is 〈f, g〉 : C → A× B such that the
following equations hold:

�A,B 〈f, g〉 = f : C → A,
�′A,B 〈f, g〉 = g : C → B.

Moreover, for any h : C → A× B we require
〈�A,Bh, �′A,Bh〉 = h : C → A× B. (prod-�)

For any objectsA,B there is an objectBA, called an exponential; an arrow
εA,B : BA ×A→ B , called evaluation; and whenever f : C × A→ B , then
there is an arrow f∗ : C → BA such that the following equation holds:

εA,B 〈f∗�C,A , �′C,A〉 = f : C ×A→ B.
If we regard f : C × A → B as a term of type B depending on the types
C and A, then we may regard f∗ as the �-abstraction of f with respect to
type A. For any h : C → BA we require

(εA,B〈h�C,A , �′C,A〉)∗ = h : C → BA. (exp-�)

There is an object 1, called a terminal object; and for any object A an
arrow©A : A→ 1. For any f : A→ 1 we require

©A = f : A→ 1. (term-�)

The equation (prod-�) secures that any arrow h : C → A× B such that
�A,Bh = f : C → A,
�′A,Bh = g : C → B

is equal to 〈f, g〉. Namely, h = 〈�A,Bh, �′A,Bh〉 = 〈f, g〉. Likewise, the
equation (exp-�) secures that any arrow h : C → BA such that

εA,B〈h�C,A, �′C,A〉 = f : C ×A→ B
is equal to f∗. Namely, h = (εA,B 〈h�C,A, �′C,A〉)∗ = f∗. And the equation
(term-�) secures that any f : A→ 1 is equal to©A.
The equations (prod-�), (exp-�), and (term-�) may therefore be called
uniqueness principles, since they entail the uniqueness of certain arrows

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


ETA-RULES IN MARTIN-LÖF TYPE THEORY 343

associated with the category-theoretic constructions of product, exponen-
tial, and terminal object. The uniqueness of these arrows is needed, for
instance, in showing that each of these constructions is unique up to iso-
morphism. When the uniqueness principles are dispensed with, the resulting
constructions are called weak (see, e.g., [2]).
A so-called bicartesian closed category is additionally equipped with the
following structure.
For any objects A,B there is an object A + B , called a co-product of A
and B ; two arrows 	A,B : A→ A+ B and 	′A,B : B → A+ B ; and whenever
f : A→ C and g : B → C , then there is [f, g] : A + B → C such that the
following equations hold:

[f, g] 	A,B = f : A→ C,
[f, g] 	′A,B = g : B → C.

Moreover, for any h : A+ B → C we require
[h	A,B , h	′A,B ] = h : A+ B → C. (co-prod-�)

There is an object 0, called an initial object; and for any objectA an arrow
�A : 0→ A. For any f : 0→ A we require

�A = f : 0→ A. (init-�)

Whereas the uniqueness principles (prod-�), (exp-�), and (term-�) con-
cern arrows whose target is a product, an exponential, or a terminal object,
the uniqueness principles (co-prod-�) and (init-�) concern arrows whose
source is a co-product or an initial object. This dual form of uniqueness
principle suggests the formulation of what we shall call co-eta rules.

§7. Co-eta rules. An eta rule for a set A asserts that any element of A is
judgementally identical to an element of constructor form. A co-eta rule for
A asserts that any function f : (x : A)C (x) applied to an arbitrary element
c : A is judgementally identical to an element of selector form.
The disjoint union A+ B : set has a selector D satisfying

D(inl(a), f, g) = f(a) : C (inl(a)),
D(inr(b), f, g) = g(b) : C (inr(b)), (+-eq)

where C : (A+ B)set, f : (x : A)C (inl(x)), and g : (y : B)C (inr(y)). Let

h : (z : A+ B)C (z).

The co-eta rule for disjoint union is then:

D
(
c, [x]h(inl(x)), [y]h(inr(y))

)
= h(c) : C (c). (+-co-�)

This rule says that h applied to an arbitrary element c : A+B is judgemen-
tally identical to an element of selector form. The following rule of inductive
extensionality is, as we shall see, equivalent:

c : A+ B

x : A � h(inl(x)) = h′(inl(x)) : C (inl(x))
y : B � h(inr(y)) = h′(inr(y)) : C (inr(y))
h(c) = h′(c) : C (c).

(+-ind-ext)

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


344 ANSTENKLEV

The second and third premiss are here written in one column for reasons
of space. This rule says that if h and h′ are judgementally identical on any
argument of canonical form, then they are judgementally identical on any
element c : A + B . In the presence of ordinary function extensionality,
(Ext), this entails that h and h′ themselves are judgementally identical,
h = h′ : (z : A+ B)C (z).
One sees the equivalence of (+-co-�) and (+-ind-ext) as follows. Assume
the premisses of (+-ind-ext) to be known. Then, by (�) and (App-cong), we
may infer:

D
(
c, [x]h(inl(x)), [y]h(inr(y))

)
= D

(
c, [x]h′(inl(x)), [y]h′(inr(y))

)
: C (c).

From (+-co-�) we thence get

h(c) = h′(c) : C (c),

the conclusion of (+-ind-ext). On the other hand, from (+-eq) we get

x : A � D
(
inl(x), [x]h(inl(x)), [y]h(inr(y))

)
= h(inl(x)) : C (inl(x)),

y : B � D
(
inr(y), [x]h(inl(x)), [y]h(inr(y))

)
= h(inr(y)) : C (inr(y)),

whence (+-ind-ext) allows us to infer

D
(
c, [x]h(inl(x)), [y]h(inr(y))

)
= h(c) : C (c).

A similar equivalence holds for co-eta rules in general. In some formal
languages, such as in the type theory as formulated in [20], there are no
selectors, but instead schemes for defining functions by induction. In such a
language, of course, we cannot formulate co-eta rules, but rules of inductive
extensionality are formulable.
The set Σ(A,B) has a selector E satisfying

E(pair(a, b), f) = f(a, b) : C (pair(a, b)), (Σ-eq)

where C : (Σ(A,B))set and f : (x : A)(y : B(x))C (pair(x, y)). For any

h : (z : Σ(A,B))C (z),

we have

[x, y]h(pair(x, y)) : (x : A)(y : B(x))C (pair(x, y)).

Thus a co-eta rule may be formulated as follows:

E
(
c, [x, y]h(pair(x, y))

)
= h(c) : C (c). (Σ-co-�)

Since in the higher order formulation of Martin-Löf type theory each
set has a unique selector, one can there formulate a co-eta rule for any
set. Relying on the Dybjer scheme for elimination rules, we may describe
a procedure for formulating the co-eta rule for A. The selector of A has
among its argument places one for each constructor of A. For instance, the
selector E has one such argument place, corresponding to the constructor
pair; and the selector D has two such argument places, one corresponding
to the constructor inl and one to the constructor inr. Suppose we are given
h : (x : A)C (x). For each constructor con of A, apply h to a term of the
form con(x1, . . . , xn). If con is a constant, then the sequence of variables

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


ETA-RULES IN MARTIN-LÖF TYPE THEORY 345

here is empty. But if con is a function, then h(con(x1, . . . , xn)) is an open
term that cannot be inserted directly into the appropriate argument place
of the selector. We obtain a closed term by means of abstraction. To obtain
a term of the right type it is, however, not in general enough to abstract
only the variables x1, . . . , xn, since the syntax of selectors allows also for
recursive arguments. (An illustration of this will be given shortly.) Insert
each closed term thus obtained through abstraction at the corresponding
argument place in the selector. The equality rules for A secures that the
resulting term is judgementally identical to h on any argument a : A of
canonical form. The co-eta rule asserts that the terms are judgementally
identical on an arbitrary argument.
It is easy to see that the co-eta rules given above for A + B and Σ(A,B)
follow the described pattern. For an illustration of a selector with a recursive
argument, let us consider the set of natural numbers, N. For any C : (N)set,
b : C (0) and f : (x : N )(y : C (x))C (s(x)), its selector R satisfies

R(0, b, f) = b : C (0),
R(s(n), b, f) = f(n,R(n, b, f)) : C (s(n)). (N-eq)

The third argument of R—associated with the constructor s and here written
f—is recursive. Given a function h : (x : N)C (x), we apply it to the
constructor 0, obtaining h(0) : C (0); and to an arbitrary element of s-
form, obtaining h(s(x)) : C (s(x)) for x : N. In order to get a term of
appropriate type from h(s(x)) we must abstract not only x but also y :
C (x), as required by the recursive argument f in R(n, b, f). We thus get
[x : N][y : C (x)]h(s(x)), and so we may formulate

R
(
n, h(0), [x : N][y : C (x)]h(s(x))

)
= h(n) : C (n). (N-co-�)

The equivalent rule of inductive extensionality is2

n : N
h(0) = h′(0) : C (0)

x : N � h(s(x)) = h′(s(x)) : C (s(x))
h(n) = h′(n) : C (n).

(N-ind-ext)

The co-eta rule for identity sets illustrates a further generalization. Let us
first recall the rule

p : Id(A, a, b) d : (z : A)C (z, z, refl(z))
J(a, b, p, d ) : C (a, b, p),

(Id-elim)

where C : (x : A)(y : A)(Id(A, x, y)) set. Assume

h : (x : A)(y : A)(p : Id(A, x, y))C (x, y, p).

2 Another extensionality principle onN is the rule of uniqueness of definition by induction:

n : N h(0) = h′(0) : C (0)

x : N � h(s(x)) = f(x, h(x)) : C (s(x))
x : N � h′(s(x)) = f(x, h′(x))) : C (s(x))

h(n) = h′(n) : C (n).

This rule, studied for instance in [11] and [25], entails (N-ind-ext), and would indeed seem to
be stronger than it.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


346 ANSTENKLEV

Thus we assume given a function on the inductive family (x : A)(y :
A) Id(A, x, y) rather than on the set Id(A, a, a). We may then formulate
a co-eta rule as follows:

J
(
a, b, p, [z]h(z, z, refl(A, z))

)
= h(a, b, p) : C (a, b, p). (Id-co-�)

This identity has been studied by Streicher [31, pp. 15–18], who shows that
it entails the so-called reflection rule:

p : Id(A, a, b)
a = b : A.

Namely, let

x, y : A,p : Id(A, x, y) � h1(x, y, p) = x : A,
x, y : A,p : Id(A, x, y) � h2(x, y, p) = y : A.

Then
z : A � h1(z, z, refl(A, z)) = h2(z, z, refl(A, z)) : A, (1)

whence, by (�) and (App-cong),

J
(
x, y, p, [z]h1(z, z, refl(A, z))

)
= J

(
x, y, p, [z]h2(z, z, refl(A, z))

)
: A.

By (Id-co-�) this yields

x, y : A,p : Id(A, x, y) � h1(x, y, p) = h2(x, y, p) : A. (2)

In light of the definitions of h1 and h2, this allows us to infer a = b : A
from p : Id(A, a, b). The step from (1) to (2) can be seen as an inference by
inductive extensionality: if h1 and h2 agree on canonical triples (z, z, refl(z)),
for z : A, then they agree on arbitrary triples (x, y, p), where p : Id(A, x, y).
In a similar fashion one can show that (Id-co-�) entails (Id-�). Namely,
let

x, y : A,p : Id(A, x, y) � g1(x, y, p) = p : Id(A, x, y),
x, y : A,p : Id(A, x, y) � g2(x, y, p) = refl(A, x) : Id(A, x, y).

Assuming (Id-co-�), we can avail ourselves of the reflection rule, hence in
the context x, y : A,p : Id(A, x, y) we have Id(A, x, y) = Id(A, x, x) : set,
whence the function g2 is well-typed. As before we can use (Id-co-�) to
conclude

refl(A, a) = c : Id(A, a, a)
for arbitrary a : A and c : Id(A, a, a).
It is easy to see from the description of the general form of co-eta rules that
the corresponding propositional co-eta rules are derivable. (This was noted
already by Luo [18, p. 201], who calls co-eta propositions ‘filling-up rules.’)
Namely, the co-eta proposition for A is inhabited for canonical elements of
A by the equality rule(s) for A and Id-introduction; by the elimination rule
for A it then follows that its co-eta proposition is inhabited for arbitrary
elements of A. This argument generalizes directly to the case where A is an
inductive family rather than an inductive set. In particular, it is easy to see
that any proposition of the form

Id
(
C (a, b, p), J

(
a, b, p, [z]h(z, z, refl(z))

)
, h(a, b, p)

)

is inhabited for a, b : A and p : Id(A, a, b). It follows that the reflection rule
and (Id-co-�) are interderivable, as already noted by Streicher.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


ETA-RULES IN MARTIN-LÖF TYPE THEORY 347

§8. Eta identities in proof theory. Prawitz [27, p. 254] briefly discusses the
notion of an expansion of a natural deduction derivation. When the main
connective of the end formula of a derivation D is ∧, ⊃, or ∨, then the
immediate expansion of D is formed as follows:

D
A ∧ B �

D
A ∧ B
A

D
A ∧ B
B

A ∧ B
(∧-exp)

D
A ⊃ B �

D
A ⊃ B [A]

B
A ⊃ B

(⊃-exp)

D
A ∨ B �

D
A ∨ B

[A]
A ∨ B

[B]
A ∨ B

A ∨ B .
(∨-exp)

Immediate expansions can be formed similarly for quantified formulae.
These expansions were considered by Prawitz in the course of a discus-
sion of the form of normal natural deduction derivations. In a proof of
normalization it is of course reductions that play the main role, that is,
operations on natural deduction derivations such as the following:

D1
A

D2
B

A ∧ B
A

� D1
A

(∧-red1)

[A]
D1
B

A ⊃ B
D2
A

B

�
D2
A
D1
B

. (⊃-red)

But by also making use of expansions, a derivation of a formula A can
be transformed into a normal derivation of A in which all the so-called
minimum formulae are atomic. For instance, the normal derivation

A ∧ (B ∧ C )
B ∧ C

A ∧ (B ∧ C ) ⊃ (B ∧ C )
has one minimum formula, B ∧ C , but it is composite. Employing (∧-exp)
one obtains the normal derivation

A ∧ (B ∧ C )
B ∧ C
B

A ∧ (B ∧ C )
B ∧ C
C

B ∧ C
A ∧ (B ∧ C ) ⊃ (B ∧ C )

in which there are two minimum formulae, B and C , of smaller complexity.
Immediate expansions are also of relevance to the question of the gen-
eral form of introduction and elimination rules. (In type theory this form is

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


348 ANSTENKLEV

described by the Dybjer schemes.) Pfenning and Davies [26] call the elim-
ination rules for a connective Φ locally sound if Φ admits of a suitable
number of reductions; and locally complete if Φ admits of an immediate
expansion. Local soundness ensures that the elimination rules for Φ are not
too strong, whereas local completeness ensures that its elimination rules are
strong enough, in particular strong enough to recover the premisses of its
introduction rules. Thus, if Φ is locally complete, then any formula whose
main connective is Φ can be derived from itself by use of the introduction
and elimination rules for Φ, as can be seen above for the case of ∧, ⊃,
and ∨.
In type-theoretical notation, the right hand side of (∨-exp) is written
as D(c, [x]inl(x), [y]inr(y)) rather than as D

(
c, [x]h(inl(x)), [y]h(inr(y))

)
,

which is the term occurring in (+-co-�). The expansion whose right hand
side corresponds to this latter term is rather

D1
A ∨ B
D2
C

� D1
A ∨ B

[A]
A ∨ B
D2
C

[B]
A ∨ B
D2
C

C

.

The expansion (∨-exp) is the special case of this whereD2 is empty and C is
A ∨ B . Expansions of this more general kind have recently been studied by
Tranchini [35]. He shows that in Schroeder-Heister’s formalism of natural
deduction with higher order rules [28], such a generalized expansion can
be formulated for any connective. In type-theoretical notation, this general
form of expansion is in effect just the general form of co-eta rules described
above restricted to selectors without recursive arguments.
Prawitz [27, p. 257] formulated the conjecture, which he (ibid. p. 261)
attributed to Martin-Löf, that identity between natural deduction deriva-
tions is the equivalence relation generated by reductions. The conjecture as
stated does thus not say that a derivation D and its expansion are always
identical, but Prawitz (ibid. p. 257) remarks that ‘it seems unlikely that
any interesting property of proofs is sensitive to differences created by an
expansion’. Martin-Löf [19, p. 104] noted that the meaning of the conjecture
depends on whether by identity between derivations one has in mind defi-
nitional identity, D ≡ D′—more on which below—or rather the notion of
identity captured by the identity proposition Id(C,D,D′). Indeed, assum-
ing the results of the present article, we may say that whereas expansion for
most connectives (viz. save the identity predicate) preserves propositional
identity, it does in general not preserve definitional identity.
In later literature on the identity of natural deduction derivations, such as
[4] and [36], it appears to be taken for granted that such identity is preserved
under expansion, although it is not specified then whether one has in mind
definitional identity or some other notion of identity. In support of the view
that expansion preserves identity a metamathematical result is often cited to
the effect that the equivalence relation generated by reduction and expansion
is the strongest candidate possible for an identity relation between proofs

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


ETA-RULES IN MARTIN-LÖF TYPE THEORY 349

that does not trivialize it, that is, that does not entail the identification of
all derivations of the same theorem (the result is restricted to the ⊃,∧-
fragment of propositional logic). The result knows many different proofs:
type-theoretic [5, 30], category-theoretic [29], and proof-theoretic (though
only for the ⊃-fragment) [36].

§9. Eta rules and meaning explanations. Martin-Löf’s meaning explana-
tions for his type theory play an essential role in the justification of its rules.
In particular, they support its so-called simple minded consistency: based
on our understanding of the system as a meaningful symbolism we can see
that it does not allow the derivation of a judgement of the form

a : ⊥
where a is a closed term.
The meaning explanations can be said to provide the system with a basic
semantics, basic in the sense that the terms in which they are formulated
do not themselves call for explanation in yet other terms. The meaning
explanations thus differ from model-theoretic semantics, where the symbols
of a formal system are explained in terms of some other mathematical
theory, typically set theory, whose primitive notions themselves are in need
of explanation. Themeaning explanations are therefore informal in the sense
that they are not stated in terms of a mathematical theory. But their being
informal does not mean that they are imprecise: on the contrary, they are
quite precise and allow for a detailed justification of the rules of the system.
Readers of the book [22] may have noticed that the rules for Π offered
there include

�([x]ap(c, x)) = c : Π(A,B). (Π-�)

The rule is natural in the context of the so-called extensional version of type
theory presented in that book. Indeed, (Π-�) together with the reflection
rule for Id allows one to demonstrate the judgement

funext(c, d ) : (∀x : A) Id(B(x), ap(c, x), ap(d, x)) ⊃ Id(Π(A,B), c, d ),
saying that c, d : Π(A,B) are propositionally identical provided they are
pointwise propositionally identical.
In line with the general programme of the book [22], a justification of
(Π-�) is offered on the basis of the meaning explanations. Any identity
judgement a = b : A has as presuppositions a : A and b : A. In particular,
(Π-�) has as a presupposition

c : Π(A,B).

Let us first assume that (Π-�) is made in the empty context. Then c is a
closed term, so by the explanation of the form of judgement a : A we know
that c is a programme that, when evaluated, yields an element of Π(A,B)
of canonical form, namely, of the form �(f), where f : (x : A)B(x). From
the explanation of the form of judgement a = b : A, and that of a canonical
element as a programme that evaluates to itself, we may infer

c = �(f) : Π(A,B).

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


350 ANSTENKLEV

For any variable x : A, we then have

ap(c, x) = ap(�(f), x) = f(x) : B(x).

The first identity follows from (App-cong), the second from Π-equality. By
the rules (�) and (�) we may infer

[x]ap(c, x) = [x]f(x) = f : (x : A)B(x)

and thence also

�([x]ap(c, x)) = �(f) = c : Π(A,B).

Thus (Π-�) has been justified in this case.
Assume next that (Π-�) is made in a nonempty context Γ. Let a be an
environment for Γ. That is, if Γ is x1 : A1, . . . , xn : An, then a is a sequence
a1, . . . , an such that

a1 : A1, . . . an : An[a1, . . . , an−1].

Here postfixed square brackets indicate substitution. By the meaning
explanation of the hypothetical judgement Γ � c : Π(A,B), we know

c[a] : Π(A,B)[a].

Since c[a] is a closed term and Π(A,B)[a] has the form Π(A′, B ′), where
A′ : set and B ′ : (A′)set, we may reason as above to find

�([x]ap(c[a], x)) = �(f) = c[a] : Π(A,B)[a].

By the meaning explanation of hypothetical judgements, this justifies

Γ � �([x]ap(c, x)) = c : Π(A,B).
For the other eta rules, we shall consider only the categorical case. The
general case follows just as in the justification of (Π-�).
Let us first consider (Σ-�). From c : Σ(A,B) we know c = pair(a, b) :
Σ(A,B) for some a : A, b : B(a). We therefore have

pair(fst(c), snd(c)) = pair
(
fst(pair(a, b)), snd(pair(a, b))

)

= pair(a, b)
= c : Σ(A,B).

The justification of (W-�) is quite similar, relying on the properties of the
two functions sup-proj1 and sup-proj2.
For the justification of (1-�), assume c : 1. Then c evaluates to an element
of canonical form. But there is just one such element, namely, 01; hence
c = 01 : 1.
A judgement of the form c : Id(A, a, b) is explained as follows: c is a
programme that, when evaluated, yields an element of the form refl(D, d )
where D = A : set, d = a : A, and d = b : A. In particular, the judgement
c : Id(A, a, a) means that c evaluates to some refl(D, d ) where D = A : set
and d = a : A. But then

refl(A, a) = refl(D, d ) = c : Id(A, a, a).

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


ETA-RULES IN MARTIN-LÖF TYPE THEORY 351

§10. Definitional identity. That eta rules are justified by the meaning
explanations does, however, not force us to accept these rules as axioms
of Martin-Löf type theory. The meaning explanations need not be the final
arbiter in the question of which rules to accept. This is clear from the case
of the so-called reflection rule:

p : Id(A, a, b)
a = b : A.

The explanation of the form of judgement p : Id(A, a, b) can be seen to
justify this rule. But the rule is not part of canonicalMartin-Löf type theory.
Indeed, several reasons can be cited for not accepting the reflection rule as
the elimination rule for Id. The rule does not fit the pattern of introduction
and elimination rules that the other set formers follow [31, p. 13]. Accepting
the reflection rule as an axiom makes judgements of the forms a : A and
a = b : A undecidable in the recursion-theoretic sense [14, pp. 62–63].
Since definitional identity should be decidable in this sense, it follows that
the reflection rule does not accord with the understanding of judgemental
identity as definitional identity. Finally, the equality rule that pairs with
the reflection rule is (Id-�), and this judgement is inconsistent with the
univalence axiom [34, Example 3.19].
There may, likewise, be several reasons for not accepting lower order
eta rules. Here it will be argued that such rules do not accord with the
understanding of judgemental identity as definitional identity.
Let us write s ≡ t for ‘s is definitionally identical to t.’ We say that
judgements of the formα = � : type anda = b : α are sound for definitional
identity if the following inferences are justified:

α = � : type
α ≡ �

a = b : α
a ≡ b.

A rule
J1 . . . Jn
α = � : type

J1 . . . Jn
a = b : α

is sound for definitional identity if from the assumption that all premisses
Jk of the relevant form are sound for definitional identity, we may infer that
also the conclusion, a = b : α or α = � : type, is sound.
The understanding of judgemental identity as definitional identity obvi-
ously requires that the rules of the system be sound for definitional identity.
Most rules governing judgemental identity are stipulatory in nature and do
not require justification in the way that, for instance, an elimination rule
requires justification. In particular, we do not need to make the conclusion
of such a rule evident on the assumption that we know the premisses. We
must make sure that, if the conclusion of the rule is a = b : α, say, then
it is plain that both a : α and b : α. But we are not obliged, on the basis
of the meaning explanations and the assumption that the premisses of the
rule are known, to make the judgement a = b : α evident, for we are simply
stipulating that this judgement holds. If we are to understand judgemental
identity as definitional identity, we are, however, obliged to justify that the
rule is sound for definitional identity.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


352 ANSTENKLEV

When carrying out such a justification we need to have a firm grasp of
the notion of definitional identity. Our only way of attaining such a grasp, it
would seem, is by reflection on the notion of definition and on definitional
practice. Definitional identity is a relation between meaningful linguistic
expressions, hence it is to be expected that a characterization of it will be
sensitive to the underlying language. The characterization of definitional
identity given by Curry and Feys [3, Section 2E] presupposes only the most
basic ways of forming expressions. We say that definitional identity is an
equivalence relation, ≡, generated by all axioms of the form

definiendum ≡ definiens
and the following rule:

X ≡ Y Z ≡ Z ′
X ≡ Y ′.

(R)

Here Y ′ is the result of replacing an occurrence of Z in Y by Z ′. The rule
(R) formalizes the principle that definitional identity is preserved under
substitution. In the context of combinatory logic, the rule is restricted
to expressions built up solely by means of function application. We shall
understand the preservation of definitional identity under substitution in
the strongest possible sense: definitional identity licences substitution in all
contexts. In particular, we shall take the rule (R) to apply also when the
relevant occurrence of Z in Y is within the scope of a bound variable. The
following will thus be valid applications of (R):

∫ 2
0 2x + 2x dx ≡ ∫ 2

0 2x + 2x dx 2x + 2x ≡ 4x
∫ 2
0 2x + 2x dx ≡ ∫ 2

0 4x dx

(∀x : D)(P(x) ⊃ ⊥) ≡ (∀x : D)(P(x) ⊃ ⊥) P(x) ⊃ ⊥ ≡ ¬P(x)
(∀x : D)¬P(x) .

Strong substitutability, as we shall call it, would seem to be justified by the
understanding of definitional identity as identity of meaning. And it follows
naturally from the view of a definition as a licence to substitute definiens for
definiendum, and vice versa, in all contexts.
The rules of type conversion

a : α α = � : type
a : �

a = b : α α = � : type
a = b : �

are clearly not instances of the rule (R). But they are justified by strong
substitutability in the sense that we may infer, say, a : � from a : α and
α ≡ � by substituting � for the predicate α in a : α. (The premiss α ≡ �
is obtained from the assumption that α = � : type is sound for definitional
identity.) For languages that accommodate typing judgements, a : α and
a = b : α, it is thus natural to postulate type conversion as a primitive rule
of definitional identity.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


ETA-RULES IN MARTIN-LÖF TYPE THEORY 353

§11. Soundness for definitional identity. Let us see how the two follow-
ing rules may be shown, using the above characterization, to be sound for
definitional identity:

f = g : (x : α)� a = b : α
f(a) = g(b) : �[a/x]

(App-cong)

α = α′ : type x : α � � = � ′ : type
(x : α)� = (x : α′)� ′ : type.

(�-type)

In the case of (App-cong) itmust be argued that iff andg, respectivelya and
b, are definitionally identical objects, then f(a) and g(b) are definitionally
identical objects. The argument may be written out as follows:

f(a) ≡ f(a) a ≡ b
f(a) ≡ f(b) f ≡ g

f(a) ≡ g(b).
It should be emphasized that the individual steps here rely on the rule (R)
and not on the rule (App-cong), whose soundness we are attempting to
justify. In the analogous justification of (�-type) it is clear that the steps rely
on (R):

(x : α)� ≡ (x : α)� α ≡ α′

(x : α)� ≡ (x : α′)� � ≡ � ′
(x : α)� ≡ (x : α′)� ′.

The justification of (�) is quite similar. In both cases we make use of strong
substitutability, that is, substitutability in all contexts.3

From the foregoing one sees that definitional identity is a congruence
relation with respect to the three basic operations of type theory, namely,
function application,f(a); function abstraction, [x]b; and type abstraction,
(x : α)� .
An equality rule is sound for definitional identity because it has the form
of a definitional equation:

definiendum ≡ definiens.
Inparticular, the equality rules for the set formerΦserve as a definitionof the
selector sel associated with Φ. (We may also think of the elimination rule for
Φasbeing part of this definition, namely, as providing the typing information

3Martin-Löf in [19] denied that the �-rule of the �-calculus is, in the present terminology,
sound for definitional identity. I believe this can be explained as follows.When the applicative
order of evaluation is assumed, as it is in Martin-Löf’s earlier work, it is natural to require
that if X ≡ Y , then X and Y evaluate to syntactically identical expressions [32]. Since it is
difficult tomake good sense of the evaluation of open expressions, in particular of expressions
occurring within the scope of a bound variable, one then seems forced to say that �x.t ≡ �x.t′
only if t and t′ are syntactically identical. This blocks the �-rule and therefore also strong
substitutability. In [21] lazy evaluation is assumed instead of applicative order, and X ≡ Y is
taken to mean thatX and Y evaluate to definitionally identical canonical objects. The �-rule
now becomes the specification of how identical canonical objects of a Π-set are formed.
Moreover, strong substitutability is no longer excluded, so the higher order rule (�) can be
justified as above.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


354 ANSTENKLEV

pertaining to sel.) It is a definition by induction on an inductively defined
set. The definition may, but need not, be recursive in the sense of relying on
‘previous’ values of itself. The definition of the selector R given by (N-eq) is
recursive, but the definition of the selectorD given by (+-eq) is not recursive.
As an example of a lower order eta rule, let us take

pair(fst(c), snd(c)) = c : Σ(A,B). (Σ-�)

Since the right-hand side of (Σ-�) is atomic, namely, a parameter c, it is
clear that we cannot obtain it from the left-hand side by a sequence of
applications of the rule (R), such as we obtained g(b) from f(a) in the
justification of (App-cong) above. Therefore, the only way of regarding (Σ-
�) as a definitional identity is by regarding it as a definition, namely, as being
of the form

definiendum ≡ definiens.
But pair is a constructor and therefore a primitive function, hence it neither
needs definition nor indeed admits of one. If we were to regard (Σ-�) as a
definition, it would therefore have to be as a definition of the two projection
functions fst and snd. But these have already been defined in terms of the
selector E; and we have no right to define the same symbol twice.4

The arguments showing why (Π-�) and (W-�) are not sound for
definitional identity are quite similar. In the case of

01 = c : 1 (1-�)

and
refl(A, a) = c : Id(A, a, a) (Id-�)

it is enough to notice that 01 and refl are constructors, whence they do not
admit of definition. The displayed identities would moreover not seem to be
felicitous as definitions, since the right-hand side—thepurported definiens—
includes a parameter, c, not present on the left-hand side.
Similar arguments work as well to show that co-eta rules are not sound
for definitional identity. For instance, the identity

E
(
c, [x, y]h(pair(x, y))

)
= h(c) : C (c) (Σ-co-�)

cannot be regarded as a definition of the selector E, which has already been
defined by (Σ-eq). Nor is it possible to derive (Σ-co-�) from a definition by
means of the rule (R).
Likewise, there is no way of deriving the equivalent rule of inductive
extensionality from definitions by means of (R):

c : Σ(A,B) x : A, y : B(x) � h(pair(x, y)) = h′(pair(x, y))
h(c) = h′(c) : C (c).

One may ask, however, whether inductive extensionality could be regarded
as a primitive rule of definitional identity. The question is pertinent since

4The ban on defining the same symbol twice is Frege’s second basic principle of definition in
[8, Section 33]. It is implicit already in Aristotle’s discussion of definition in Topics VI.4. This
answers Tait’s request [33, p. 170] for a principle that excludes (Σ-�) as a rule of definitional
identity.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


ETA-RULES IN MARTIN-LÖF TYPE THEORY 355

we shall argue below that ordinary extensionality, (Ext), is sound for defini-
tional identity.As a principle of definitional identity, inductive extensionality
would say: if h and h′ are definitionally identical on all terms (closed or open)
of constructor form, then they are definitionally identical on all terms. The
onlyway of justifying this, however, would seem tobe by saying that any term
in the domain of h and h′ is definitionally identical to a term of constructor
form; but that is a lower order eta rule.
A principle similar to inductive extensionality deserves a brief discus-
sion here. Uniqueness of definition by induction says that if the inductively
defined functions h and h′ have the same definition (in a suitable sense),
then they are themselves definitionally identical. On Σ(A,B) andA+B this
principle coincides with inductive extensionality, but onN andwell-ordering
sets,W(A,B), they come apart (see footnote 2). Definition by induction is
of course a legitimate mode of definition; but there is a sense in which such a
definition is incomplete, since the definiendum is required to have a special
form. Thus, in a definition by induction on Σ(A,B), the definiendum must
have the form h(pair(x, y)); and on N it must have the form h(0) or h(s(x))
(possibly with parameters). Suppose that for inductively defined functions
h, h′ : (z : N)C (z), we have h(0) ≡ h′(0) and

x : N � h(s(x)) ≡ f(x, h(x)),
x : N � h′(s(x)) ≡ f(x, h′(x)).

Thus, h and h′ have, in a suitable sense, the same definition. From the
definitions of h and h′ we may infer h(z), h′(z) : C (z) for any variable
z : N. We cannot, however, infer anything as to what these h(z) and h′(z)
are. All we can say is that they are arbitrary values of h and h′ respectively.
In particular, then, we cannot infer that h(z) and h′(z) are definitionally
identical. The same argument applies, mutatis mutandis, to all other sets.
Hence, uniqueness of definition by induction is not sound for definitional
identity.
That the reflection rule is not sound for definitional identity has in effect
already been noted. Indeed, it is difficult to see that we can infer that a
and b are definitionally identical merely from the existence of a proof p :
Id(A, a, b). If the reflection rule is assumed as the elimination rule for Id, the
notions of judgemental identity and definitional identity thus come apart.
The inference

a : ¬A b : ¬B
A = B : set

appears to be justified by the meaning explanations. Assuming that we know
the premisses, a : ¬A and b : ¬B , we must make the judgement A = B : set
evident, that is, wemust argue that any canonical element ofA is a canonical
element of B , and vice versa; and that identical canonical elements of A
are identical canonical elements of B , and vice versa. Assume that c is
a canonical element of A. Then ap(a, c) : ⊥. Since ⊥ has no canonical
elements, there can be no programme ap(a, c) that evaluates to a canonical
element of ⊥. Hence, by ex falso quodlibet, we may infer that c is also a
canonical element of B . The rest of the argument is similar. The inference

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


356 ANSTENKLEV

thus seems to be justified by the meaning explanations. But it is clearly not
sound for definitional identity: we cannot infer that two sets A and B are
definitionally identical simply on the grounds that neither is inhabited.

§12. Definitional identity at higher types. From a logico-grammatical
point of view, the greatest difference between the lower order formulation
and the higher order formulation of type theory is that in the latter, func-
tion symbols are categorematic, or self-standing. For instance, pair, pair(a),
and pair(a, b) are there all well-formed terms, whereas in the lower order
formulation only the last of these counts as well-formed.
In a higher order type theory with functional abstraction, one may
therefore require that the explicit definition of a function symbol take the
form

f ≡ t.
The explicit definitionof a function symbolwould thus be identical in form to
the explicit definition of an individual constant symbol. It is, however, more
in line with ordinary mathematical practice to allow the explicit definition
of f to take the form

f(x) ≡ t[x]
where t[x] is some expression whose free variables are among x.
That the rule

[x]f(x) = f : (x : α)� (�)

is sound for definitional identity can be seen by reflection on this com-
mon, and quite unobjectionable, practice of allowing the definiendum in
an explicit definition of a function symbol f to take the form f(x). For
concreteness let us consider the following definition of a unary function
f : (N)N:

f(x) ≡ x2 + x − 1. (Def-f)

In the language of type theory, there seems to be only one way to justify
viewing this as a definition of f, namely, by identifying f with the result
of abstracting on the definiens of (Def-f). But this identification is justified
only if f is definitionally identical to [x]f(x). The following derivation
spells out the reasoning.

[x]f(x) ≡ f
f ≡ [x]f(x)

f(x) ≡ x2 + x − 1
[x]f(x) ≡ [x](x2 + x − 1)

f ≡ [x](x2 + x − 1).
Thus it seems that mathematical practice, when seen through the lens of
type theory, assumes (�) to be a primitive principle of definitional identity.
For only such an assumption justifies regarding (Def-f) as constituting a
definition of f.
Reflection on mathematical practice thus recommends that for a higher
order language with functional abstraction, all well-typed identities of the
form

[x]f(x) ≡ f

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


ETA-RULES IN MARTIN-LÖF TYPE THEORY 357

be taken as axioms of definitional identity. The higher order rule (�) is
therefore sound for definitional identity.
This argument for the soundness of (�) is not in conflict with the argument
against the soundness of (Π-�). The soundness of

�([x]ap(c, x)) = c : Π(A,B) (Π-�)

for definitional identity would require that it be regarded as a definition: not
as a definition of �, which is a constructor, but of ap. The function ap has,
however, already been defined, either in terms of the selector F or—if ap is
regarded as the selector—by the Π-equality rule. The rule (�), by contrast,
is not postulated as a definition—of abstraction or function application,
say—but as a primitive principle of definitional identity.
Nor is the argument for the soundness of (�) applicable to (Π-�). The
identity (Π-�) cannot be regarded as a primitive principle of definitional
identity, since it concerns the quite specific function symbols � and ap and
the quite specific type Π(A,B). The rule (�), by contrast, concerns the
general operations of abstraction and function application and the general
function type, (x : α)� .
For a Π-set we regard � as primitive and ap as defined. At the function
type (x : α)� the situation is in a sense the opposite: here application is
primitive, whereas abstraction is defined. Namely, the function type (x : α)�
is explained in terms of the two elimination-like rules (App) and (App-cong)
governing the application operation. Abstraction [x]b is then defined by the
higher order rule

x : α � b : � a : α
([x]b)(a) = b[a/x] : �[a/x].

(�)

In particular, the rule (�) is sound for definitional identity, since it serves
as a definition of the abstraction operation. By stipulating the rule (Abs)
we assert that [x]b is a function of type (x : α)� whenever x : α � b : � .
We explain which function it is through the rule (�), namely, by specifying
its application behaviour. That (�) cannot be regarded as a definition of
abstraction is clear, since the operand of the abstraction in [x]f(x) has the
special form f(x) and not the general form b.
Since (�) and (�) are sound for definitional identity, it follows that also
function extensionality is sound:

f, g : (x : α)� x : α � f(x) = g(x) : �
f = g : (x : α)� .

(Ext)

Consider for instance the following derivation:

[x]f(x) ≡ f
f ≡ [x]f(x)

f(x) ≡ g(x)
[x]f(x) ≡ [x]g(x)

f ≡ [x]g(x) [x]g(x) ≡ g
f ≡ g.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


358 ANSTENKLEV

An independent argument for the soundness of (Ext) can also be given. We
want to justify the following rule:

f(x) ≡ g(x)
f ≡ g.

By the rules of substitution and the assumption that x is not free in f, we
have, for any argument a : α,

f(a) ≡ f(x)[a/x],
and likewise for g. Hence, if f(x) ≡ g(x), then

f(a) ≡ f(x)[a/x] ≡ g(x)[a/x] ≡ g(a)
by strong substitutability. A function f : (x : α)� is determined by its appli-
cation behaviour. Sincef and g agree definitionally on each argument—they
have definitionally identical application behaviour—theymust themselves be
definitionally identical. That is, we must have f ≡ g. Since (�) follows from
(Ext) and (�), this gives an alternative argument for the soundness of (�).

§13. Acknowledgments. I am grateful to PerMartin-Löf for explaining to
me his view on eta rules and to Luca Tranchini for discussion and comments.
While writing the article I have been supported by grant no. 17-18344Y from
the Czech Science Foundation, GAČR.

REFERENCES

[1] R. Backhouse, P. Chisholm, G.Malcolm, and E. Saaman,Do-it-yourself type theory.
Formal Aspects of Computing, vol. 1 (1989), pp. 19–84.
[2] S. Baranov and S. Soloviev,Conditionally reversible computations and weak univerality

in category theory. Journal of Mathematical Sciences, vol. 200 (2014), pp. 654–661.
[3]H. Curry and R. Feys, Combinatory Logic, North-Holland, Amsterdam, 1958.
[4]K. Došen, Identity of proofs based on normalization and generality, this Bulletin, vol.

9 (2003), pp. 477–503.
[5]K. Došen and Z. Petrić, The maximality of the typed lambda calculus and of cartesian

closed categories. Publications de l’Institut Mathématique, vol. 68 (2000), pp. 1–19.
[6] P.Dybjer, Inductive families. Formal Aspects of Computing, vol. 6 (1994), pp. 440–465.
[7] , A general formulation of simultaneous inductive-recursive definitions in type

theory. The Journal of Symbolic Logic, vol. 65 (2000), pp. 525–549.
[8]G. Frege, Grundgesetze der Arithmetik, Hermann Pohle, Jena, 1893.
[9] R. Garner, On the strength of dependent products in the type theory of Martin-Löf.

Annals of Pure and Applied Logic, vol. 160 (2009), pp. 1–12.
[10] H. Goguen, A typed operational semantics for type theory, Ph.D. thesis, University

of Edinburgh, 1994.
[11] R. L. Goodstein, Recursive Number Theory, North-Holland, Amsterdam, 1957.
[12] R. Harper, F. Honsell, and G. Plotkin, A framework for defining logics. Journal of

the ACM, vol. 40 (1993), pp. 143–184.
[13]M.Hedberg,A coherence theorem for Martin-Löf’s type theory. Journal of Functional

Programming, vol. 8 (1998), pp. 413–436.
[14]M. Hofmann, Extensional Constructs in Intensional Type Theory, Springer, London,

1997, Reprinted of Ph.D. thesis, University of Edinburgh, 1995.
[15]M. Hofmann and T. Streicher, The groupoid interpretation of type theory, Twenty-

Five Years of Constructive Type Theory (G. Sambin and J. Smith, editors), OxfordUniversity
Press, Oxford, 1998, pp. 83–111.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core


ETA-RULES IN MARTIN-LÖF TYPE THEORY 359

[16] J. Lambek and P. J. Scott, Introduction toHigherOrderCategorical Logic, Cambridge
University Press, Cambridge, 1986.
[17] P. Landin, The mechanical evaluation of expressions. The Computer Journal, vol. 6

(1964), pp. 308–320.
[18] Z. Luo, Computation and Reasoning, Clarendon Press, Oxford, 1994.
[19] P. Martin-Löf, About models for intuitionistic type theories and the notion of defini-

tional equality, Proceedings of the Third Scandinavian Logic Symposium (S. Kanger, editor),
North-Holland, Amsterdam, 1975, pp. 81–109.
[20] ,An intuitionistic theory of types:Predicative part,Logic Colloquium ’73 (H. E.

Rose and J. Shepherdson, editors), North-Holland, Amsterdam, 1975, pp. 73–118.
[21] , Constructive mathematics and computer programming, Logic, Methodology

and Philosophy of Science, 1979 (J. L. Cohen, J. Łoś, H. Pfeiffer, and K. P. Podewski, editors),
North-Holland, Amsterdam, 1982, pp. 153–175.
[22] , Intuitionistic Type Theory, Bibliopolis, Naples, 1984.
[23] B. Nordström, K. Petersson, and J. Smith, Programming in Martin-Löf ’s Type

Theory, Oxford University Press, Oxford, 1990.
[24] ,Martin-Löf’s type theory, Handbook of Logic in Computer Science. Volume

5: Logic and Algebraic Methods (S. Abramsky, D. Gabbay, and T.Maibaum, editors), Oxford
University Press, Oxford, 2000, pp. 1–37.
[25]M. Okada and P. J. Scott, A note on rewriting theory for uniqueness of iteration.

Theory and Applications of Categories, vol. 6 (1999), pp. 47–64.
[26] F. Pfenning and R.Davies, A judgemental reconstruction of modal logic.Mathemat-

ical Structures in Computer Science, vol. 11 (2001), pp. 511–540.
[27]D. Prawitz, Ideas and results in proof theory, Proceedings of the Second Scandinavian

Logic Symposium (J. E. Fenstad, editor), North-Holland, Amsterdam, 1971, pp. 235–307.
[28] P. Schroeder-Heister, A natural extension of natural deduction. The Journal of

Symbolic Logic, vol. 49 (1984), pp. 1284–1300.
[29] A. Simpson, Categorical completeness results for the simply-typed lambda-calculus,

Typed Lambda Calculi and Applications (M. Dezani-Ciancaglini, editor), Springer, Berlin,
1995, pp. 414–427.
[30] R. Statman, �-definable functionals and �� conversion. Archiv für mathematische

Logik, vol. 23 (1983), pp. 21–26.
[31] T. Streicher, Investigations into intensional type theory, Habilitation thesis, Ludwig-

Maximilian-University Munich, 1993.
[32]W. W. Tait, Intensional interpretations of functionals of finite type I. The Journal of

Symbolic Logic, vol. 32 (1967), pp. 198–212.
[33] ,Primitive recursive arithmetic and its role in the foundations of arithmetic:His-

torical and philosophical reflections, Epistemology versus Ontology. Essays on the Philosophy
and Foundations of Mathematics in Honour of Per Martin-Löf (P. Dybjer, S. Lindström, E.
Palmgren, and G. Sundholm, editors), Springer, Dordrecht, 2012, pp. 161–180.
[34] The Univalent Foundations Program,Homotopy Type Theory:Univalent Founda-

tions of Mathematics, Institute for Advanced Study, Princeton, 2013. Available at http://
homotopytypetheory.org/book.
[35] L. Tranchini, Proof-theoretic harmony: Towards an intensional account. Synthese

(2016), DOI: 10.1007/s11229-016-1200-3.
[36] F. Widebäck, Identity of Proofs, Almqvist & Wiksell, Stockholm, 2001.

INSTITUTE OF PHILOSOPHY
CZECH ACADEMYOF SCIENCES
JILSKÁ 1, PRAGUE 1, 110 00, CZECH REPUBLIC

E-mail: klev@flu.cas.cz

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2019.21
Downloaded from https://www.cambridge.org/core. University Putra Malaysia, on 24 Oct 2019 at 12:29:45, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2019.21
https://www.cambridge.org/core

